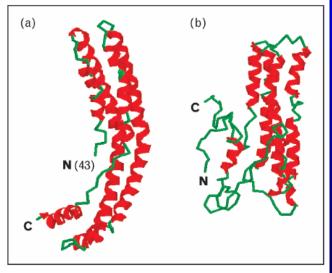
High Density Lipoprotein (HDL) Classification

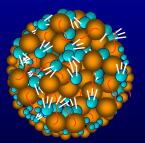

Thomas Dayspring, MD, FACP

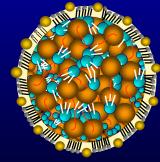
Clinical Assistant Professor of Medicine University of Medicine and Dentistry of New Jersey Attending in Medicine: St Joseph's Hospital, Paterson, NJ

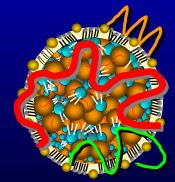
Certified Menopause Clinician: North American Menopause Society North Jersey Institute of Menopausal Lipidology Wayne, New Jersey

Apolipoprotein A-I

- F ApoA-I is an exchangeable helical, apoprotein that is the major constituent of HDL
- F In lipid-free and lipid-bound states, apolipoproteins span multiple conformations, some of which are required for apolipoprotein functions such as:
 - Binding to lipid surfaces
 - Interactions with cellular receptors, lipid transporters, charged ligands
 - Enzyme activation



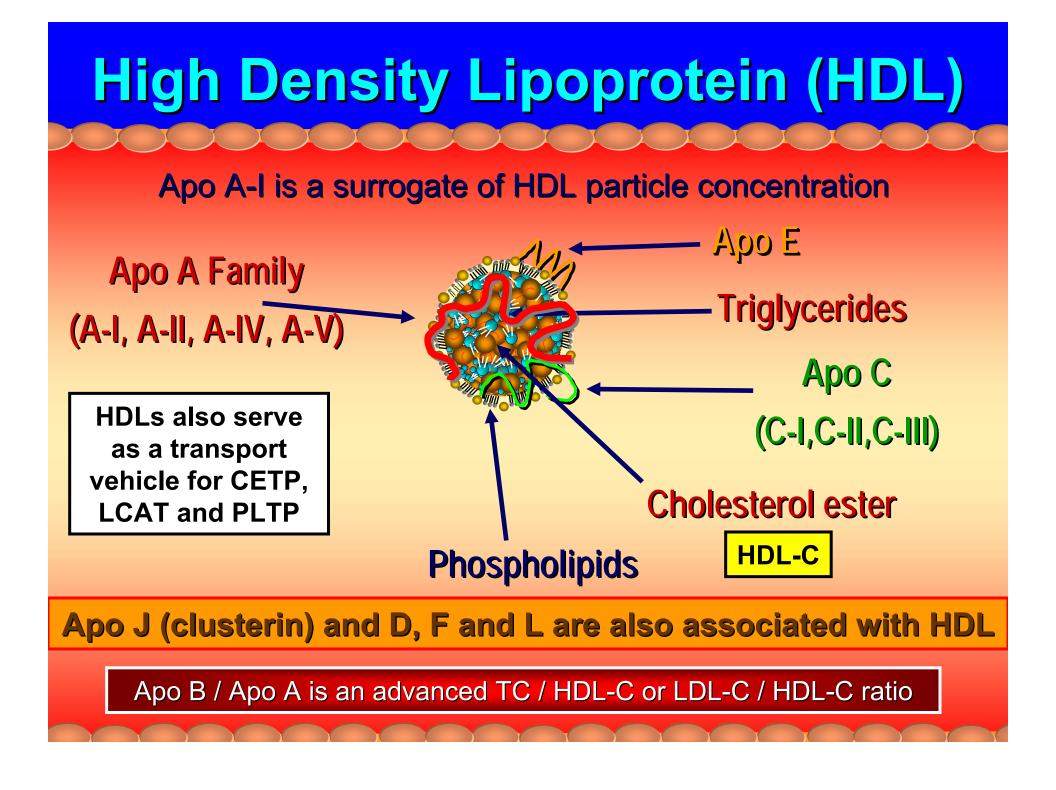

Atomic models of monomeric lipid-free apoA-I


Olga Gursky. Curr Opin Lipidol 2005;16:287–294. Davidson WF & Silva G. Curr Opin Lipidol 2005;16;295-300.

High Density Lipoproteins

- F The smallest lipoproteins (7-12 nm in diameter) as well as the densest (1.063-1.25 g/ml)
- F Hydrophobic core of cholesterol esters plus a small amount of TG
 - Surrounded by a surface monolayer of phospholipids, free cholesterol
 - and several apolipoproteins

Barter, Philip et al. Atherosclerosis 2003;168:195-211


High Density Lipoprotein

- F HDL includes a complex family of lipoprotein particles that exist in a constant state of dynamic flux as they interact with other HDL particles and beta-lipoproteins.
- F HDL has the highest proportion of protein (>50%) relative to lipid compared to other lipoproteins
- **F** Lipid Composition
 - Phospholipids 50% Cholesteryl Ester 30% Free Cholesterol 10% Triglycerides 10%

Nauck et al. Handbook of Lipoprotein Testing AACC Press Washington DC 2nd Ed 2000

High Density Lipoprotein

- F Historically HDLs have been subfractionated into 2 or 3 subclasses based on the density of particles and at least 5 subclasses based on particle size using nondenaturing gel electrophoresis
- F Immunoaffinity chromatography has been used to separate HDL by apolipoprotein content into LpA-I and LpA-I/A-II
- F Agarose gel electrophoresis is used to subfractionate HDL into lipid-containing spherical particles (α HDL) and lipid-free or lipid-poor apoA-I (preβ HDL) based on electrophoretic mobility

High Density Lipoprotein Classification

- F The HDL is heterogeneous in terms of shape, size, density, composition and surface charge and is classified:
 - By density (ultracentrifugation)
 - By gradient gel electrophoresis (GGE)
 - By NMR-spectroscopy spectral signals
 - By surface charge (agarose gel electrophoresis)
 - By Apolipoprotein composition

High Density Lipoproteins Density by Ultracentrifugation

- F Two major subfractions
 HDL₂ (1.063 < density < 1.125 g/ml)
 HDL₃ (1.125 < density < 1.21 g/ml)
 - Non-denaturing gel electrophoresis separates the HDLs into 5 distinct subpopulations
 HDL_{2b}, HDL_{2a} HDL_{3a}, HDL_{3b}, HDL_{3c}

Largest

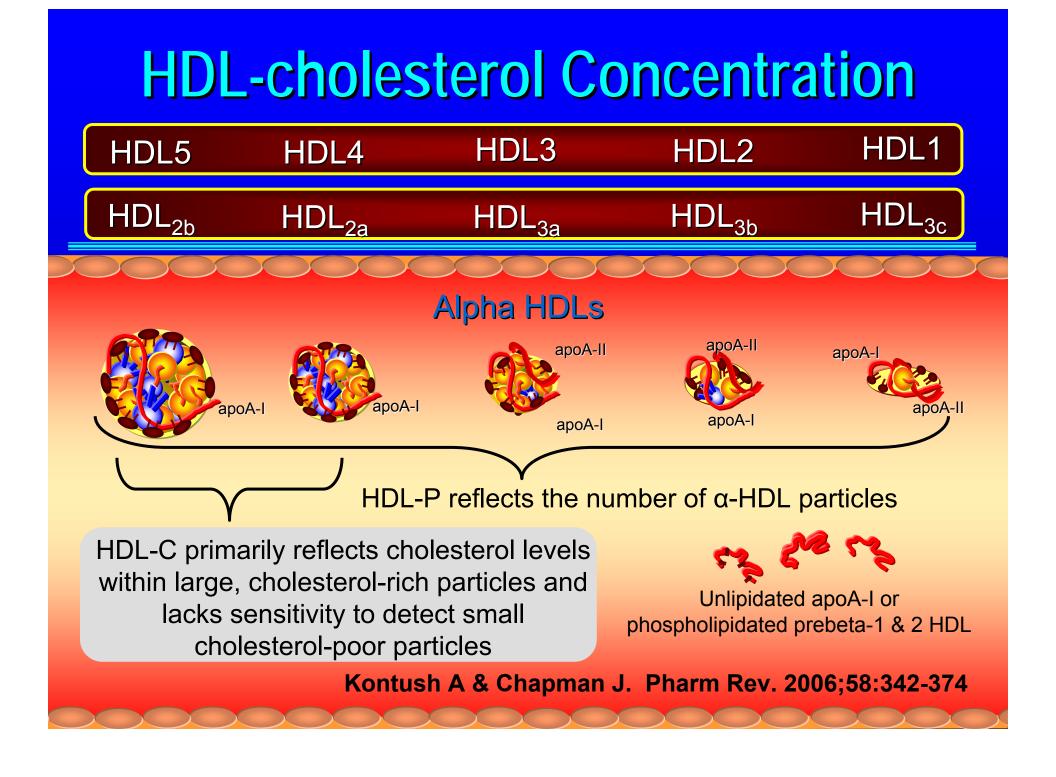
Smallest

Barter, Philip et al. Atherosclerosis 2003;168:195-211

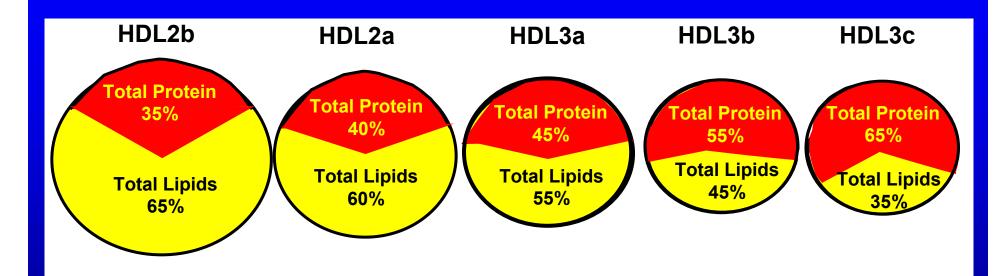
High Density Lipoproteins by NMR Nuclear Magnetic Resonance Spectroscopy

- F Quantification is based on the detected amplitudes of spectral signals emitted by HDL subclasses of different size
- F Each subclass signal emanates from the aggregate number of terminal methyl groups on the lipids within the particle
- F This technique identifies 5 subclasses
 - H1 H2 H3 H4 H5

Smallest



Barter, Philip et al. Atherosclerosis 2003;168:195-211

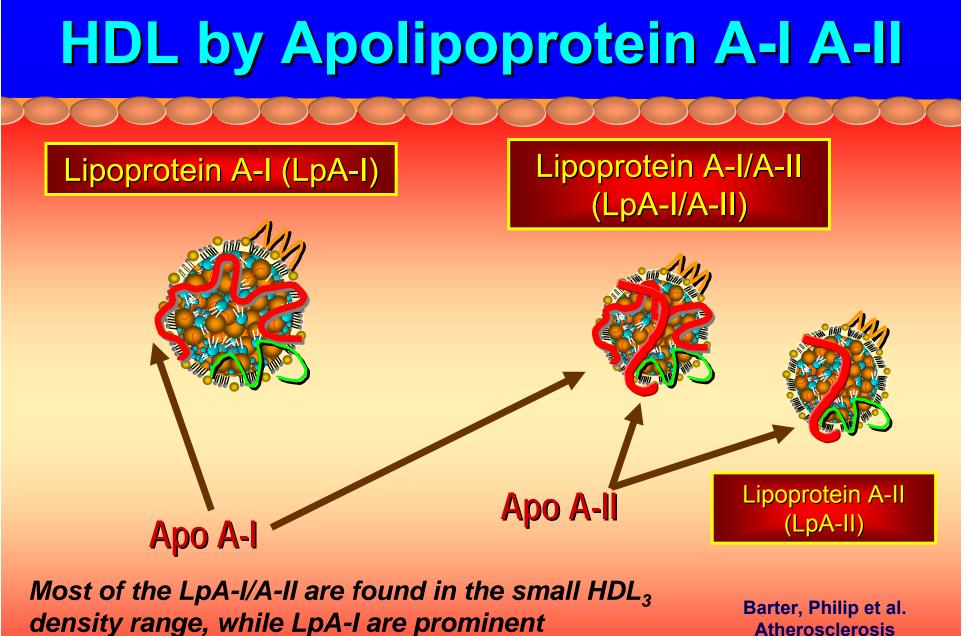

HDL Subpopulations by GGE & NMR

Nuclear Magnetic Resonance Subpopulation Nomenclature

HDL5	HDL4	HDL3	HDL2	HDL1
10-13 nm	8.8-10 nm	8.2-8.8 nm	7.8-8.2 nm	7.3-7.7 nm
		apoA-II	apoA-II	apoA-I
ar ar	oA-I			apoA-II
		apoA-I	apoA-I	aportin
HDL _{2b}	HDL _{2a}	HDL _{3a}	HDL _{3b}	HDL _{3c}
10.6 nm	9.2 nm	8.4 nm	8.0 nm	7.6 nm
Gel Electrophoresis Subpopulation Nomenclature				
Barter, Philip et al. Atherosclerosis 2003;168:195-211				

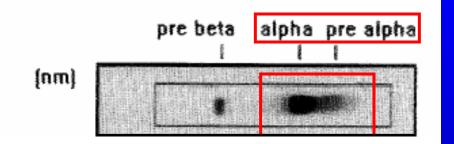
Alpha HDL Buoyancy

Functional plasma HDL are spherical or discoidal particles of high hydrated density (1.063–1.21 g/ml) due to elevated protein content (30% by weight) compared with other lipoproteins


Apolipoprotein A-I Alpha HDLs Immature Mature apoA-II apoA-II apoA apoA-I apoA-I apoA-II apoA-I apoA-I HDL_{3a} or H3 HDL_{3b} or H2 HDL_{3c} or H1 HDL_{2a} or H4 HDL_{2h} or H5 α -HDL₂ α-HDL₁ α -HDL₃ α -HDL₄ Unlipidated apoA-I or phospholipidated prebeta-1 & 2 HDL Chylomicron

LDL Sizing by Gradient Gel Electrophoresis

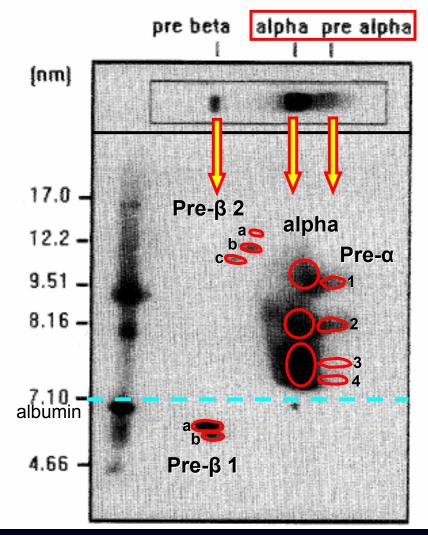
HDL-S₃GGE™


Segmented HDL Subclass Determination

components of both HDL₂ and HDL₃

2003:168:195-211

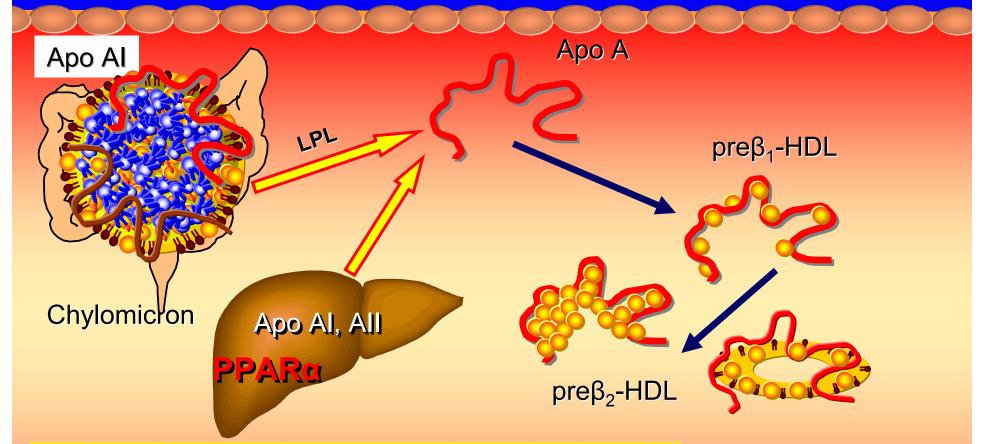
- F In the first dimension (mobility), there are three ApoA-I HDL subpopulations separated by charge on agarose gel (on the basis of electrophoretic mobilities relative to albumin)
 - Alpha: α (R_f = 1) mobility similar to albumin
 - Pre-alpha: Pre- α (R_f > 1) mobility faster than albumin
 - Pre-beta: Pre- β (R_f < 1) mobility slower than albumin
- F In the second dimension (size characterization), the particles (12) were differentiated on nondenaturing gel electrophoresis by modal diameters


First Dimension

Alpha (α) migrating ApoA-I on agarose gel electrophoresis

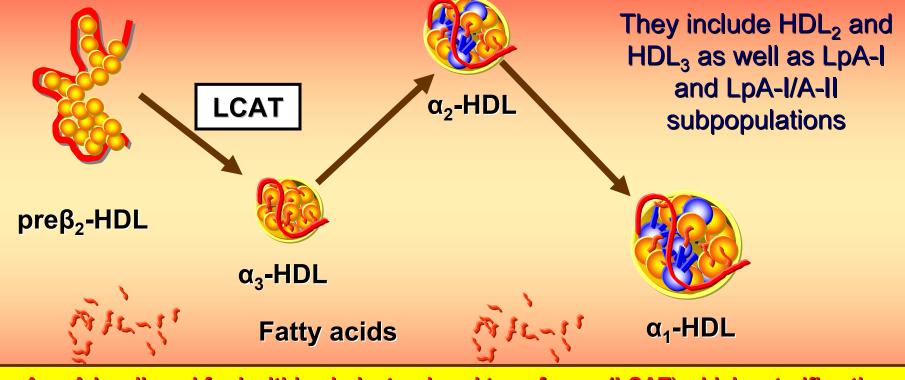
Second Dimension

Nondenaturing concave polyacrylamide gel electrophoresis & immunolocalization


Asztalos BF Biochim Biophys Acta 1992;1169:291-300

12 ApoA-I HDL Subpopulations

% Distribution


Asztalos BF Biochim Biophys Acta 1992;1169:291-300

Pre-beta HDLs are either lipid poor Apo AI or discoidal particles consisting of one or two molecules of Apo AI complexed with phospholipids and possibly a small amount of unesterified cholesterol.

Sviridov D & Nestel P. Atherosclerosis 2002:161:245-254

Apo A is a ligand for lecithin cholesterol acyl transferase (LCAT) which esterifies the cholesterol and causes the particle to become spherical

Sviridov D & Nestel P. Atherosclerosis 2002:161:245-254